toshiba_ir.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. #include "toshiba_ir.h"
  2. #include <stdint.h>
  3. #include <stdio.h>
  4. #include "esp_log.h"
  5. #include "rxTimer.h"
  6. #include <string.h>
  7. #include "config.h"
  8. uint8_t xorBytes(const uint8_t * const start, const uint16_t length);
  9. /**
  10. * @Analys of Toshiba IR Rx:
  11. * 0 1 2 3 4 5 6 7 8
  12. * F2 0D 03 FC 01 D0 A3 00 72 30 Grader
  13. * F2 0D 03 FC 01 90 A3 00 32 26 Grader
  14. * F2 0D 03 FC 01 40 A3 00 E2 21 Grader
  15. * F2 0D 03 FC 01 30 A3 00 92 20 Grader
  16. * F2 0D 03 FC 01 20 A3 00 82 19 Grader
  17. * F2 0D 03 FC 01 10 A3 00 B2 18
  18. * F2 0D 03 FC 01 00 A3 00 A2 17
  19. *
  20. * F2 0D 03 FC 01 D0 03 00 D2 Auto Fan 0000 0 (0 is Auto, 2-6 is the speed, 6 is Max)
  21. * F2 0D 03 FC 01 D0 43 00 92 1 0100 2
  22. * 2 0110 3
  23. * F2 0D 03 FC 01 D0 83 00 52 3 1000 4
  24. * 4 1010 5
  25. * F2 0D 03 FC 01 D0 C3 00 12 5 1100 6
  26. *
  27. * F2 0D 03 FC 01 60 83 00 E2 ON 1000 0011 (3 is ON, 7 is OFF)
  28. * F2 0D 03 FC 01 60 87 00 E6 OFF 1000 0111
  29. *
  30. */
  31. // Toshiba A/C
  32. const uint32_t kToshibaAcHdrMark = 4420;
  33. const uint32_t kToshibaAcHdrSpace = 4450;
  34. const uint32_t kToshibaAcBitMark = 570;
  35. const uint32_t kToshibaAcOneSpace = 1600;
  36. const uint32_t kToshibaAcZeroSpace = 510;
  37. const uint32_t kToshibaAcUsualGap = 7960; // Others
  38. uint8_t data[kToshibaNumberOfBytes]; // Temp data during rx
  39. uint8_t dataTransfer[kToshibaNumberOfBytes]; // Send as pointer to receiver
  40. void sendToshibaIRCode(uint8_t *data) {
  41. gpio_set_level(GPIO_IR_TX_DATA, 1);
  42. delayMicroseconds(kToshibaAcHdrMark);
  43. gpio_set_level(GPIO_IR_TX_DATA, 0);
  44. delayMicroseconds(kToshibaAcHdrSpace);
  45. for(uint8_t b=0;b<kToshibaNumberOfBits;b++) {
  46. const uint8_t byteNo = b / 8;
  47. const uint8_t shiftBits = b % 8;
  48. gpio_set_level(GPIO_IR_TX_DATA, 1);
  49. delayMicroseconds(kToshibaAcBitMark);
  50. gpio_set_level(GPIO_IR_TX_DATA, 0);
  51. const uint8_t bit_data = (1u << (7-shiftBits)) & data[byteNo];
  52. delayMicroseconds( bit_data ? kToshibaAcOneSpace : kToshibaAcZeroSpace );
  53. }
  54. gpio_set_level(GPIO_IR_TX_DATA, 1);
  55. delayMicroseconds(kToshibaAcHdrMark);
  56. gpio_set_level(GPIO_IR_TX_DATA, 0);
  57. delayMicroseconds(kToshibaAcUsualGap);
  58. }
  59. enum
  60. {
  61. UNKNOWN,
  62. STARTER,
  63. T0,
  64. T1,
  65. DONE
  66. };
  67. static uint8_t rx_state = UNKNOWN;
  68. static uint32_t rx_numBits;
  69. void Toshiba_ir_ResetDecoder()
  70. {
  71. //ESP_LOGI("T", "Reset decoder");
  72. rx_numBits = 0;
  73. rx_state = UNKNOWN;
  74. memset(data,0,kToshibaNumberOfBytes);
  75. }
  76. static void addBit(uint8_t value)
  77. {
  78. if( value == 1 ) {
  79. const uint8_t byteNo = rx_numBits / 8;
  80. const uint8_t shiftBits = rx_numBits % 8;
  81. //ESP_LOGI("BIT RX:","%u %u", byteNo, shiftBits);
  82. data[byteNo] |= 1u << (7-shiftBits);
  83. }
  84. rx_numBits++;
  85. }
  86. #define START_PULSE_MIN (kToshibaAcHdrMark-200)
  87. #define START_PULSE_MAX (kToshibaAcHdrMark+200)
  88. #define T0_PULSE_MIN (kToshibaAcBitMark-100)
  89. #define T0_PULSE_MAX (kToshibaAcBitMark+100)
  90. #define SHORT_PULSE_MIN (kToshibaAcZeroSpace-100)
  91. #define SHORT_PULSE_MAX (kToshibaAcZeroSpace+100)
  92. #define LONG_PULSE_MIN (kToshibaAcOneSpace-100)
  93. #define LONG_PULSE_MAX (kToshibaAcOneSpace+100)
  94. static int32_t rx_decode(uint32_t width)
  95. {
  96. switch (rx_state) {
  97. case UNKNOWN: // Start of frame A
  98. if ( START_PULSE_MIN <= width && width <= START_PULSE_MAX )
  99. {
  100. rx_state = STARTER;
  101. //ESP_LOGI("T", "->STARTER");
  102. }
  103. else
  104. {
  105. return -1; // error, reset
  106. }
  107. break;
  108. case STARTER: // Start of frame B
  109. if ( START_PULSE_MIN <= width && width <= START_PULSE_MAX )
  110. {
  111. rx_state = T0;
  112. //ESP_LOGI("T", "STARTER");
  113. }
  114. else
  115. {
  116. return -1; // error, reset
  117. }
  118. break;
  119. case T0: // First half of pulse : HIGH around 230us
  120. if(rx_numBits == kToshibaNumberOfBits)
  121. { // end of frame
  122. //ESP_LOGI("T", "END OF FRAME");
  123. rx_state = DONE;
  124. return 1;
  125. }
  126. else if( T0_PULSE_MIN <= width && width <= T0_PULSE_MAX )
  127. {
  128. rx_state = T1;
  129. //ESP_LOGI("T", "T0");
  130. }
  131. else
  132. {
  133. return -1; // error, reset
  134. }
  135. break;
  136. case T1:
  137. if( SHORT_PULSE_MIN <= width && width <= SHORT_PULSE_MAX )
  138. {
  139. addBit(0);
  140. //ESP_LOGI("T", "Short %u",rx_numBits);
  141. }
  142. else if( LONG_PULSE_MIN <= width && width <= LONG_PULSE_MAX )
  143. {
  144. addBit(1);
  145. //ESP_LOGI("T", "Long %u", rx_numBits);
  146. }
  147. else
  148. {
  149. return -1; // error, reset
  150. }
  151. rx_state = T0;
  152. break;
  153. }
  154. return 0;
  155. }
  156. uint8_t* nextPulseToshiba_ir(uint32_t width)
  157. {
  158. uint8_t* retVal = NULL;
  159. if (width > 0)
  160. {
  161. if (rx_state != DONE)
  162. {
  163. switch (rx_decode(width))
  164. {
  165. case -1:
  166. Toshiba_ir_ResetDecoder();
  167. break;
  168. case 1:
  169. rx_state = DONE;
  170. // Check checksum
  171. if( xorBytes(data,8) == data[8] ) {
  172. memcpy(dataTransfer,data,kToshibaNumberOfBytes);
  173. Toshiba_ir_ResetDecoder();
  174. retVal = dataTransfer;
  175. }
  176. else {
  177. ESP_LOGE("TOSHIBA", "WRONG CHKSUM");
  178. Toshiba_ir_ResetDecoder();
  179. }
  180. break;
  181. }
  182. }
  183. }
  184. return retVal;
  185. }
  186. /// Calculate a rolling XOR of all the bytes of an array.
  187. /// @param[in] start A ptr to the start of the byte array to calculate over.
  188. /// @param[in] length How many bytes to use in the calculation.
  189. /// @return The 8-bit calculated result of all the bytes and init value.
  190. /// Copied from: https://github.com/crankyoldgit/IRremoteESP8266/blob/master/src/IRutils.cpp
  191. uint8_t xorBytes(const uint8_t * const start, const uint16_t length) {
  192. uint8_t checksum = 0;
  193. const uint8_t *ptr;
  194. for (ptr = start; ptr - start < length; ptr++) checksum ^= *ptr;
  195. return checksum;
  196. }