esic.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279
  1. #include "esic.h"
  2. #include <stdint.h>
  3. #include <stdio.h>
  4. #include "esp_log.h"
  5. #include "../rxTimer.h"
  6. #include "../led.h"
  7. /**
  8. **********************************************************************************
  9. * TEMP 3
  10. * ESIC WT450H
  11. +---+ +---+ +-------+ + high
  12. | | | | | | |
  13. | | | | | | |
  14. + +---+ +---+ +-------+ low
  15. ^ ^ ^ ^ ^ clock cycle
  16. | 1 | 1 | 0 | 0 | translates as
  17. Each transmission is 36 bits long (i.e. 72 ms)
  18. .short_width = 976, // half-bit width 976 us
  19. .long_width = 1952, // bit width 1952 us
  20. Data is transmitted in pure binary values, NOT BCD-coded.
  21. Example transmission (House 1, Channel 1, RH 59 %, Temperature 23.5 �C)
  22. 1100 00010011001110110100100110011000
  23. b00 - b03 (4 bits): Constant, 1100, probably preamble
  24. b04 - b07 (4 bits): House code (here: 0001 = HC 1)
  25. b08 - b09 (2 bits): Channel code - 1 (here 00 = CC 1)
  26. b10 - b12 (3 bits): Constant, 110
  27. b13 - b19 (7 bits): Relative humidity (here 0111011 = 59 %)
  28. b20 - b34 (15 bits): Temperature (see below)
  29. b35 - b35 (1 bit) : Parity (xor of all bits should give 0)
  30. The temperature is transmitted as (temp + 50.0) * 128,
  31. which equals (temp * 128) + 6400. Adding 50.0 �C makes
  32. all values positive, an unsigned 15 bit integer where the
  33. first 8 bits correspond to the whole part of the temperature
  34. (here 01001001, decimal 73, substract 50 = 23).
  35. Remaining 7 bits correspond to the fractional part.
  36. To avoid floating point calculations I store the raw temperature value
  37. as a signed integer in the variable esicTemp, then transform it to
  38. actual temperature * 10 using "esicTemp = (esicTemp - 6400) * 10 / 128",
  39. where 6400 is the added 50 times 128.
  40. When reporting the temperature I simply print "esicTemp / 10" (integer division,
  41. no fraction), followed by a decimal point and "esicTemp % 10" (remainder, which
  42. equals first fractional decimal digit).
  43. Summary of bit fields:
  44. 1100 0001 00 110 0111011 010010011001100 0
  45. c1 hc cc c2 rh t p
  46. c1, c2 = constant field 1 and 2
  47. hc, cc = house code and channel code
  48. rh, t = relative humidity, temperature
  49. p = parity bit 1111111111111110
  50. This interpretation is from: https://github.com/merbanan/rtl_433/blob/master/src/devices/wt450.c
  51. 1100 0001 | 0011 0011 | 1000 0011 | 1011 0011 | 0001
  52. xxxx ssss | ccxx bhhh | hhhh tttt | tttt tttt | sseo
  53. - x: constant
  54. - s: House code
  55. - c: Channel
  56. - b: battery low indicator (0=>OK, 1=>LOW)
  57. - h: Humidity
  58. - t: Temperature, 12 bit, offset 50, scale 16
  59. - s: sequence number of message repeat
  60. - e: parity of all even bits
  61. - o: parity of all odd bits
  62. **********************************************************************************
  63. */
  64. volatile unsigned long long temp3_x_data;
  65. void ESIC_ResetDecoder() {
  66. temp3_x_data = 0;
  67. }
  68. #define NO_OF_PULSES 60
  69. #define max(a,b) (((a)>(b))?(a):(b))
  70. #define isShortPulse(width) (((long_pulse/2)-maxDiff) <= width && width <= ((long_pulse/2)+maxDiff))
  71. #define isLongPulse(width) ((long_pulse-maxDiff) <= width && width <= (long_pulse+maxDiff))
  72. unsigned int temp3_pulses[NO_OF_PULSES];
  73. static int long_pulse = 1955;
  74. static int maxDiff = 300;
  75. static void storePulses(unsigned int inWidth) {
  76. int i;
  77. // Shift pulses down
  78. for(i=1;i<NO_OF_PULSES;i++) {
  79. temp3_pulses[i-1] = temp3_pulses[i];
  80. }
  81. temp3_pulses[NO_OF_PULSES-1] = inWidth;
  82. }
  83. static void sweepForNoise() {
  84. // If we have a short pulse in position 2
  85. // Then add together pos 1,2 and 3 if they are a valid pulse
  86. // This way we can handle one single noise pulse in a real pulse
  87. if( temp3_pulses[NO_OF_PULSES-2] < ((long_pulse/2)-maxDiff) ) {
  88. int totPulse = temp3_pulses[NO_OF_PULSES-1]+temp3_pulses[NO_OF_PULSES-2]+temp3_pulses[NO_OF_PULSES-3];
  89. if( isShortPulse(totPulse) || isLongPulse(totPulse) ) {
  90. // Store new pulse in last position
  91. temp3_pulses[NO_OF_PULSES-1] = totPulse;
  92. // Move everything up again
  93. for(int i=NO_OF_PULSES-2;i>1;i--) {
  94. temp3_pulses[i] = temp3_pulses[i-2];
  95. }
  96. temp3_pulses[0] = 0;
  97. temp3_pulses[1] = 0;
  98. }
  99. }
  100. }
  101. /*static void adjustTiming() {
  102. int p1 = temp3_pulses[NO_OF_PULSES-8];
  103. int p2 = temp3_pulses[NO_OF_PULSES-7];
  104. int p3 = temp3_pulses[NO_OF_PULSES-6];
  105. int p4 = temp3_pulses[NO_OF_PULSES-5];
  106. int p5 = temp3_pulses[NO_OF_PULSES-4];
  107. int p6 = temp3_pulses[NO_OF_PULSES-3];
  108. int p7 = temp3_pulses[NO_OF_PULSES-2];
  109. int p8 = temp3_pulses[NO_OF_PULSES-1];
  110. // Check max differance between the short pulses
  111. int sh_mean = (p1+p2+p3+p4) / 4;
  112. int sh_max_diff = max(max(abs(p1-sh_mean),abs(p2-sh_mean)),max(abs(p3-sh_mean),abs(p4-sh_mean)));
  113. // Check max differance between the long pulses
  114. int long_mean = (p5+p6+p7+p8) / 4;
  115. int long_max_diff = max(max(abs(p5-long_mean),abs(p6-long_mean)),max(abs(p7-long_mean),abs(p8-long_mean)));
  116. if( sh_max_diff < maxDiff && long_max_diff < maxDiff ) {
  117. int mean = (long_mean + sh_mean)/2;
  118. if( long_mean > (mean+maxDiff) && sh_mean < (mean-maxDiff) ) {
  119. if( abs(long_mean - (sh_mean*2)) < maxDiff ) {
  120. long_pulse = (long_mean + sh_mean*2)/2;
  121. maxDiff = long_mean / 15;
  122. }
  123. }
  124. }
  125. }*/
  126. // The latest/newest pulse is at the end of the array [59]
  127. // This ([59]) is the latest bit in the bit-stream from the transmitter
  128. // This is way we input the bits at a high position and shift them towards lower values
  129. // So..start reading backwards and working towards the first/highest bits
  130. static int checkPulsePattern() {
  131. int i = NO_OF_PULSES-1; // Start reading from the last received (end of array)
  132. int b = 0;
  133. unsigned long long code = 0;
  134. while( i >= 0 ) {
  135. int combWidth = temp3_pulses[i] + temp3_pulses[i-1];
  136. if( isLongPulse(temp3_pulses[i]) ) {
  137. b++;
  138. i-=1;
  139. code = code >> 1;
  140. }
  141. else if( isShortPulse(temp3_pulses[i]) && isShortPulse(temp3_pulses[i-1]) ) {
  142. b++;
  143. i-=2;
  144. code = ((code >> 1) | 0x200000000);
  145. }
  146. else if( isLongPulse( combWidth ) ) {
  147. b++;
  148. i-=2;
  149. code = ((code >> 1) | 0x200000000);
  150. }
  151. else {
  152. return -1;
  153. }
  154. if( b == 34 ) {
  155. /*
  156. 0000 0001 00 110 0101000 010010110101000 1
  157. AND: 0011 1111 00 111 0000000 000000000000000 0 = 001111110011100000000000000000000000 = 0x3F3800000
  158. RES: 0000 0001 00 110 0000000 000000000000000 0 = 000000010011000000000000000000000000 = 0x013000000
  159. Summary of bit fields:
  160. 1100 0001 00 110 0111011 010010011001100 0
  161. c1 hc cc c2 rh t p
  162. */
  163. if( (code & 0x3F3800000) == 0x013000000 ) {
  164. temp3_x_data = (code&0xFFFFFFFF);
  165. // Check parity
  166. int even=0;
  167. unsigned long long data = temp3_x_data;
  168. for(int i=0;i<32;i++) {
  169. if( data & 1 ) even++;
  170. data >>= 1;
  171. }
  172. if( even % 2 != 0 ) {
  173. return -1;
  174. }
  175. // A correct code has been received
  176. //printf("Code received: %llu on row:%d\n",(code&0xFFFFFFFF),row_no);
  177. temp3_x_data &= 0xFFFFFFF0; // Remove sequence and parity bits in lowest nibble
  178. return 1;
  179. }
  180. else {
  181. return -1;
  182. }
  183. }
  184. }
  185. return 0;
  186. }
  187. static int temp3decode (unsigned int inWidth) {
  188. int width = inWidth; //preProcessPulses(inWidth);
  189. if( width == -1 ) return -1;
  190. if( width == 0 ) return 0;
  191. storePulses(inWidth);
  192. sweepForNoise();
  193. //adjustTiming();
  194. return checkPulsePattern();
  195. }
  196. int64_t nextPulseESICSensor(uint32_t width) {
  197. static int64_t previous_data = 0;
  198. static uint32_t old_time=0;
  199. static uint32_t now;
  200. int64_t retVal = -1;
  201. if( width > 0 ) {
  202. if( temp3_x_data == 0 ) {
  203. temp3decode(width);
  204. }
  205. }
  206. if( temp3_x_data > 0 ) {
  207. now = millis();
  208. if( temp3_x_data != previous_data || (now > (old_time+1000)) ) {
  209. previous_data = temp3_x_data;
  210. retVal = temp3_x_data;
  211. blinkTheLED();
  212. }
  213. old_time = now;
  214. ESIC_ResetDecoder();
  215. }
  216. return retVal;
  217. }