123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248 |
- #include "esic.h"
- #include <stdint.h>
- #include <stdio.h>
- #include "esp_log.h"
- #include "../rxTimer.h"
- #include "../led.h"
- /**
- **********************************************************************************
- * TEMP 3
- * ESIC WT450H
- +---+ +---+ +-------+ + high
- | | | | | | |
- | | | | | | |
- + +---+ +---+ +-------+ low
-
- ^ ^ ^ ^ ^ clock cycle
- | 1 | 1 | 0 | 0 | translates as
-
- Each transmission is 36 bits long (i.e. 72 ms)
- .short_width = 976, // half-bit width 976 us
- .long_width = 1952, // bit width 1952 us
-
- Data is transmitted in pure binary values, NOT BCD-coded.
-
- Example transmission (House 1, Channel 1, RH 59 %, Temperature 23.5 �C)
- 1100 00010011001110110100100110011000
-
- b00 - b03 (4 bits): Constant, 1100, probably preamble
- b04 - b07 (4 bits): House code (here: 0001 = HC 1)
- b08 - b09 (2 bits): Channel code - 1 (here 00 = CC 1)
- b10 - b12 (3 bits): Constant, 110
- b13 - b19 (7 bits): Relative humidity (here 0111011 = 59 %)
- b20 - b34 (15 bits): Temperature (see below)
- b35 - b35 (1 bit) : Parity (xor of all bits should give 0)
-
- The temperature is transmitted as (temp + 50.0) * 128,
- which equals (temp * 128) + 6400. Adding 50.0 �C makes
- all values positive, an unsigned 15 bit integer where the
- first 8 bits correspond to the whole part of the temperature
- (here 01001001, decimal 73, substract 50 = 23).
- Remaining 7 bits correspond to the fractional part.
-
- To avoid floating point calculations I store the raw temperature value
- as a signed integer in the variable esicTemp, then transform it to
- actual temperature * 10 using "esicTemp = (esicTemp - 6400) * 10 / 128",
- where 6400 is the added 50 times 128.
- When reporting the temperature I simply print "esicTemp / 10" (integer division,
- no fraction), followed by a decimal point and "esicTemp % 10" (remainder, which
- equals first fractional decimal digit).
-
- Summary of bit fields:
- 1100 0001 00 110 0111011 010010011001100 0
- c1 hc cc c2 rh t p
-
- c1, c2 = constant field 1 and 2
- hc, cc = house code and channel code
- rh, t = relative humidity, temperature
- p = parity bit 1111111111111110
- **********************************************************************************
- */
- volatile unsigned long long temp3_x_data;
- void ESIC_ResetDecoder() {
- temp3_x_data = 0;
- }
- #define NO_OF_PULSES 60
- #define max(a,b) (((a)>(b))?(a):(b))
- #define isShortPulse(width) (((long_pulse/2)-maxDiff) <= width && width <= ((long_pulse/2)+maxDiff))
- #define isLongPulse(width) ((long_pulse-maxDiff) <= width && width <= (long_pulse+maxDiff))
- unsigned int temp3_pulses[NO_OF_PULSES];
- static int long_pulse = 1955;
- static int maxDiff = 300;
- static void storePulses(unsigned int inWidth) {
- int i;
- // Shift pulses down
- for(i=1;i<NO_OF_PULSES;i++) {
- temp3_pulses[i-1] = temp3_pulses[i];
- }
- temp3_pulses[NO_OF_PULSES-1] = inWidth;
- }
- static void sweepForNoise() {
- // If we have a short pulse in position 2
- // Then add together pos 1,2 and 3 if they are a valid pulse
- // This way we can handle one single noise pulse in a real pulse
- if( temp3_pulses[NO_OF_PULSES-2] < ((long_pulse/2)-maxDiff) ) {
- int totPulse = temp3_pulses[NO_OF_PULSES-1]+temp3_pulses[NO_OF_PULSES-2]+temp3_pulses[NO_OF_PULSES-3];
-
- if( isShortPulse(totPulse) || isLongPulse(totPulse) ) {
-
- // Store new pulse in last position
- temp3_pulses[NO_OF_PULSES-1] = totPulse;
- // Move everything up again
- for(int i=NO_OF_PULSES-2;i>1;i--) {
- temp3_pulses[i] = temp3_pulses[i-2];
- }
- temp3_pulses[0] = 0;
- temp3_pulses[1] = 0;
- }
- }
- }
- /*static void adjustTiming() {
- int p1 = temp3_pulses[NO_OF_PULSES-8];
- int p2 = temp3_pulses[NO_OF_PULSES-7];
- int p3 = temp3_pulses[NO_OF_PULSES-6];
- int p4 = temp3_pulses[NO_OF_PULSES-5];
- int p5 = temp3_pulses[NO_OF_PULSES-4];
- int p6 = temp3_pulses[NO_OF_PULSES-3];
- int p7 = temp3_pulses[NO_OF_PULSES-2];
- int p8 = temp3_pulses[NO_OF_PULSES-1];
- // Check max differance between the short pulses
- int sh_mean = (p1+p2+p3+p4) / 4;
- int sh_max_diff = max(max(abs(p1-sh_mean),abs(p2-sh_mean)),max(abs(p3-sh_mean),abs(p4-sh_mean)));
- // Check max differance between the long pulses
- int long_mean = (p5+p6+p7+p8) / 4;
- int long_max_diff = max(max(abs(p5-long_mean),abs(p6-long_mean)),max(abs(p7-long_mean),abs(p8-long_mean)));
- if( sh_max_diff < maxDiff && long_max_diff < maxDiff ) {
- int mean = (long_mean + sh_mean)/2;
- if( long_mean > (mean+maxDiff) && sh_mean < (mean-maxDiff) ) {
- if( abs(long_mean - (sh_mean*2)) < maxDiff ) {
- long_pulse = (long_mean + sh_mean*2)/2;
- maxDiff = long_mean / 15;
- }
- }
- }
- }*/
- // The latest/newest pulse is at the end of the array [59]
- // This ([59]) is the latest bit in the bit-stream from the transmitter
- // This is way we input the bits at a high position and shift them towards lower values
- // So..start reading backwards and working towards the first/highest bits
- static int checkPulsePattern() {
- int i = NO_OF_PULSES-1; // Start reading from the last received (end of array)
- int b = 0;
- unsigned long long code = 0;
- while( i >= 0 ) {
- int combWidth = temp3_pulses[i] + temp3_pulses[i-1];
- if( isLongPulse(temp3_pulses[i]) ) {
- b++;
- i-=1;
- code = code >> 1;
- }
- else if( isShortPulse(temp3_pulses[i]) && isShortPulse(temp3_pulses[i-1]) ) {
- b++;
- i-=2;
- code = ((code >> 1) | 0x200000000);
- }
- else if( isLongPulse( combWidth ) ) {
- b++;
- i-=2;
- code = ((code >> 1) | 0x200000000);
- }
- else {
- return -1;
- }
- if( b == 34 ) {
- /*
- 0000 0001 00 110 0101000 010010110101000 1
- AND: 0011 1111 00 111 0000000 000000000000000 0 = 001111110011100000000000000000000000 = 0x3F3800000
- RES: 0000 0001 00 110 0000000 000000000000000 0 = 000000010011000000000000000000000000 = 0x013000000
- Summary of bit fields:
- 1100 0001 00 110 0111011 010010011001100 0
- c1 hc cc c2 rh t p
- */
- if( (code & 0x3F3800000) == 0x013000000 ) {
- temp3_x_data = (code&0xFFFFFFFF);
- // Check parity
- int even=0;
- unsigned long long data = temp3_x_data;
- for(int i=0;i<32;i++) {
- if( data & 1 ) even++;
- data >>= 1;
- }
- if( even % 2 != 0 ) {
- return -1;
- }
- // A correct code has been received
- //printf("Code received: %llu on row:%d\n",(code&0xFFFFFFFF),row_no);
- return 1;
-
- }
- else {
- return -1;
- }
- }
- }
- return 0;
- }
- static int temp3decode (unsigned int inWidth) {
- int width = inWidth; //preProcessPulses(inWidth);
- if( width == -1 ) return -1;
- if( width == 0 ) return 0;
- storePulses(inWidth);
- sweepForNoise();
- //adjustTiming();
- return checkPulsePattern();
- }
- int64_t nextPulseESICSensor(uint32_t width) {
-
- volatile static int result;
-
- if( width > 0 ) {
- if( temp3_x_data == 0 ) {
-
- result = temp3decode(width);
- }
- }
-
- return (temp3_x_data > 0);
- }
|