temp3.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. #ifdef _WIN32
  2. #include "stdafx.h"
  3. #endif
  4. #include <stdio.h>
  5. #include <stdlib.h>
  6. /**
  7. **********************************************************************************
  8. * TEMP 3
  9. * ESIC WT450H
  10. +---+ +---+ +-------+ + high
  11. | | | | | | |
  12. | | | | | | |
  13. + +---+ +---+ +-------+ low
  14. ^ ^ ^ ^ ^ clock cycle
  15. | 1 | 1 | 0 | 0 | translates as
  16. Each transmission is 36 bits long (i.e. 72 ms)
  17. Data is transmitted in pure binary values, NOT BCD-coded.
  18. Example transmission (House 1, Channel 1, RH 59 %, Temperature 23.5 °C)
  19. 1100 00010011001110110100100110011000
  20. b00 - b03 (4 bits): Constant, 1100, probably preamble
  21. b04 - b07 (4 bits): House code (here: 0001 = HC 1)
  22. b08 - b09 (2 bits): Channel code - 1 (here 00 = CC 1)
  23. b10 - b12 (3 bits): Constant, 110
  24. b13 - b19 (7 bits): Relative humidity (here 0111011 = 59 %)
  25. b20 - b34 (15 bits): Temperature (see below)
  26. b35 - b35 (1 bit) : Parity (xor of all bits should give 0)
  27. The temperature is transmitted as (temp + 50.0) * 128,
  28. which equals (temp * 128) + 6400. Adding 50.0 °C makes
  29. all values positive, an unsigned 15 bit integer where the
  30. first 8 bits correspond to the whole part of the temperature
  31. (here 01001001, decimal 73, substract 50 = 23).
  32. Remaining 7 bits correspond to the fractional part.
  33. To avoid floating point calculations I store the raw temperature value
  34. as a signed integer in the variable esicTemp, then transform it to
  35. actual temperature * 10 using "esicTemp = (esicTemp - 6400) * 10 / 128",
  36. where 6400 is the added 50 times 128.
  37. When reporting the temperature I simply print "esicTemp / 10" (integer division,
  38. no fraction), followed by a decimal point and "esicTemp % 10" (remainder, which
  39. equals first fractional decimal digit).
  40. Summary of bit fields:
  41. 1100 0001 00 110 0111011 010010011001100 0
  42. c1 hc cc c2 rh t p
  43. c1, c2 = constant field 1 and 2
  44. hc, cc = house code and channel code
  45. rh, t = relative humidity, temperature
  46. p = parity bit 1111111111111110
  47. **********************************************************************************
  48. */
  49. volatile unsigned long long temp3_x_data;
  50. void temp3ResetDecoder () {
  51. temp3_x_data = 0;
  52. }
  53. #define NO_OF_PULSES 60
  54. #define max(a,b) (((a)>(b))?(a):(b))
  55. #define isShortPulse(width) (((long_pulse/2)-maxDiff) <= width && width <= ((long_pulse/2)+maxDiff))
  56. #define isLongPulse(width) ((long_pulse-maxDiff) <= width && width <= (long_pulse+maxDiff))
  57. unsigned int temp3_pulses[NO_OF_PULSES];
  58. #ifdef _WIN32
  59. int long_pulse = 1955;
  60. #else
  61. static int long_pulse = 1955;
  62. #endif
  63. static int maxDiff = 100;
  64. static void storePulses(unsigned int inWidth) {
  65. int i;
  66. // Shift pulses down
  67. for(i=1;i<NO_OF_PULSES;i++) {
  68. temp3_pulses[i-1] = temp3_pulses[i];
  69. }
  70. temp3_pulses[NO_OF_PULSES-1] = inWidth;
  71. }
  72. static void sweepForNoise() {
  73. // If we have a short pulse in position 2
  74. // Then add together pos 1,2 and 3 if they are a valid pulse
  75. // This way we can handle one single noise pulse in a real pulse
  76. if( temp3_pulses[NO_OF_PULSES-2] < ((long_pulse/2)-maxDiff) ) {
  77. int totPulse = temp3_pulses[NO_OF_PULSES-1]+temp3_pulses[NO_OF_PULSES-2]+temp3_pulses[NO_OF_PULSES-3];
  78. if( isShortPulse(totPulse) || isLongPulse(totPulse) ) {
  79. // Store new pulse in last position
  80. temp3_pulses[NO_OF_PULSES-1] = totPulse;
  81. // Move everything up again
  82. for(int i=NO_OF_PULSES-2;i>1;i--) {
  83. temp3_pulses[i] = temp3_pulses[i-2];
  84. }
  85. temp3_pulses[0] = 0;
  86. temp3_pulses[1] = 0;
  87. }
  88. }
  89. }
  90. static void adjustTiming() {
  91. int p1 = temp3_pulses[NO_OF_PULSES-8];
  92. int p2 = temp3_pulses[NO_OF_PULSES-7];
  93. int p3 = temp3_pulses[NO_OF_PULSES-6];
  94. int p4 = temp3_pulses[NO_OF_PULSES-5];
  95. int p5 = temp3_pulses[NO_OF_PULSES-4];
  96. int p6 = temp3_pulses[NO_OF_PULSES-3];
  97. int p7 = temp3_pulses[NO_OF_PULSES-2];
  98. int p8 = temp3_pulses[NO_OF_PULSES-1];
  99. // Check max differance between the short pulses
  100. int sh_mean = (p1+p2+p3+p4) / 4;
  101. int sh_max_diff = max(max(abs(p1-sh_mean),abs(p2-sh_mean)),max(abs(p3-sh_mean),abs(p4-sh_mean)));
  102. // Check max differance between the long pulses
  103. int long_mean = (p5+p6+p7+p8) / 4;
  104. int long_max_diff = max(max(abs(p5-long_mean),abs(p6-long_mean)),max(abs(p7-long_mean),abs(p8-long_mean)));
  105. if( sh_max_diff < maxDiff && long_max_diff < maxDiff ) {
  106. int mean = (long_mean + sh_mean)/2;
  107. if( long_mean > (mean+maxDiff) && sh_mean < (mean-maxDiff) ) {
  108. if( abs(long_mean - (sh_mean*2)) < maxDiff ) {
  109. long_pulse = (long_mean + sh_mean*2)/2;
  110. maxDiff = long_mean / 15;
  111. #ifdef _WIN32
  112. printf("MATCH %d %d %d %d %d %d %d %d = %u\n",p1,p2,p3,p4,p5,p6,p7,p8,long_pulse);
  113. #endif
  114. }
  115. }
  116. }
  117. }
  118. #ifdef _WIN32
  119. extern int row_no;
  120. #endif
  121. // The latest/newest pulse is at the end of the array [59]
  122. // This ([59]) is the latest bit in the bit-stream from the transmitter
  123. // This is way we input the bits at a high position and shift them towards lower values
  124. // So..start reading backwards and working towards the first/highest bits
  125. static int checkPulsePattern() {
  126. int i = NO_OF_PULSES-1; // Start reading from the last received (end of array)
  127. int b = 0;
  128. unsigned long long code = 0;
  129. while( i >= 0 ) {
  130. #ifdef _WIN32
  131. if( row_no == 201 ) {
  132. volatile int i = 0;
  133. i++;
  134. }
  135. #endif
  136. int combWidth = temp3_pulses[i] + temp3_pulses[i-1];
  137. if( isLongPulse(temp3_pulses[i]) ) {
  138. b++;
  139. i-=1;
  140. code = code >> 1;
  141. }
  142. else if( isShortPulse(temp3_pulses[i]) && isShortPulse(temp3_pulses[i-1]) ) {
  143. b++;
  144. i-=2;
  145. code = ((code >> 1) | 0x200000000);
  146. }
  147. else if( isLongPulse( combWidth ) ) {
  148. b++;
  149. i-=2;
  150. code = ((code >> 1) | 0x200000000);
  151. }
  152. else {
  153. return -1;
  154. }
  155. if( b == 34 ) {
  156. /*
  157. 0000 0001 00 110 0101000 010010110101000 1
  158. AND: 0011 1111 00 111 0000000 000000000000000 0 = 001111110011100000000000000000000000 = 0x3F3800000
  159. RES: 0000 0001 00 110 0000000 000000000000000 0 = 000000010011000000000000000000000000 = 0x013000000
  160. Summary of bit fields:
  161. 1100 0001 00 110 0111011 010010011001100 0
  162. c1 hc cc c2 rh t p
  163. */
  164. if( (code & 0x3F3800000) == 0x013000000 ) {
  165. temp3_x_data = (code&0xFFFFFFFF);
  166. // Check parity
  167. int even=0;
  168. unsigned long long data = temp3_x_data;
  169. for(int i=0;i<32;i++) {
  170. if( data & 1 ) even++;
  171. data >>= 1;
  172. }
  173. if( even % 2 != 0 ) {
  174. return -1;
  175. }
  176. // A correct code has been received
  177. //printf("Code received: %llu on row:%d\n",(code&0xFFFFFFFF),row_no);
  178. return 1;
  179. }
  180. else {
  181. return -1;
  182. }
  183. }
  184. }
  185. return 0;
  186. }
  187. static int temp3decode (unsigned int inWidth) {
  188. int width = inWidth; //preProcessPulses(inWidth);
  189. if( width == -1 ) return -1;
  190. if( width == 0 ) return 0;
  191. storePulses(inWidth);
  192. sweepForNoise();
  193. //adjustTiming();
  194. return checkPulsePattern();
  195. }
  196. int nextPulseTemp3 (unsigned int width) {
  197. volatile static int result;
  198. if( width > 0 ) {
  199. if( temp3_x_data == 0 ) {
  200. result = temp3decode(width);
  201. }
  202. }
  203. return (temp3_x_data > 0);
  204. }